2,259 research outputs found

    Ontology learning for the semantic deep web

    Get PDF
    Ontologies could play an important role in assisting users in their search for Web pages. This dissertation considers the problem of constructing natural ontologies that support users in their Web search efforts and increase the number of relevant Web pages that are returned. To achieve this goal, this thesis suggests combining the Deep Web information, which consists of dynamically generated Web pages and cannot be indexed by the existing automated Web crawlers, with ontologies, resulting in the Semantic Deep Web. The Deep Web information is exploited in three different ways: extracting attributes from the Deep Web data sources automatically, generating domain ontologies from the Deep Web automatically, and extracting instances from the Deep Web to enhance the domain ontologies. Several algorithms for the above mentioned tasks are presented. Lxperimeiital results suggest that the proposed methods assist users with finding more relevant Web sites. Another contribution of this dissertation includes developing a methodology to evaluate existing general purpose ontologies using the Web as a corpus. The quality of ontologies (QoO) is quantified by analyzing existing ontologies to get numeric measures of how natural their concepts and their relationships are. This methodology was first applied to several major, popular ontologies, such as WordNet, OpenCyc and the UMLS. Subsequently the domain ontologies developed in this research were evaluated from the naturalness perspective

    Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex

    Get PDF
    Focused ultrasound (FUS) has recently been investigated as a new mode of non-invasive brain stimulation, which offers exquisite spatial resolution and depth control. We report on the elicitation of explicit somatosensory sensations as well as accompanying evoked electroencephalographic (EEG) potentials induced by FUS stimulation of the human somatosensory cortex. As guided by individual-specific neuroimage data, FUS was transcranially delivered to the hand somatosensory cortex among healthy volunteers. The sonication elicited transient tactile sensations on the hand area contralateral to the sonicated hemisphere, with anatomical specificity of up to a finger, while EEG recordings revealed the elicitation of sonication-specific evoked potentials. Retrospective numerical simulation of the acoustic propagation through the skull showed that a threshold of acoustic intensity may exist for successful cortical stimulation. The neurological and neuroradiological assessment before and after the sonication, along with strict safety considerations through the individual-specific estimation of effective acoustic intensity in situ and thermal effects, showed promising initial safety profile; however, equal/more rigorous precautionary procedures are advised for future studies. The transient and localized stimulation of the brain using image-guided transcranial FUS may serve as a novel tool for the non-invasive assessment and modification of region-specific brain functionopen43

    Tuning of undoped ZnO thin film via plasma enhanced atomic layer deposition and its application for an inverted polymer solar cell

    Get PDF
    We studied the tuning of structural and optical properties of ZnO thin film and its correlation to the efficiency of inverted solar cell using plasma-enhanced atomic layer deposition (PEALD). The sequential injection of DEZn and O2 plasma was employed for the plasma-enhanced atomic layer deposition of ZnO thin film. As the growth temperature of ZnO film was increased from 100 ??C to 300??C, the crystallinity of ZnO film was improved from amorphous to highly ordered (002) direction ploy-crystal due to self crystallization. Increasing oxygen plasma time in PEALD process also introduces growing of hexagonal wurtzite phase of ZnO nanocrystal. Excess of oxygen plasma time induces enhanced deep level emission band (500 ??? 700 nm) in photoluminescence due to Zn vacancies and other defects. The evolution of structural and optical properties of PEALD ZnO films also involves in change of electrical conductivity by 3 orders of magnitude. The highly tunable PEALD ZnO thin films were employed as the electron conductive layers in inverted polymer solar cells. Our study indicates that both structural and optical properties rather than electrical conductivities of ZnO films play more important role for the effective charge collection in photovoltaic device operation. The ability to tune the materials properties of undoped ZnO films via PEALD should extend their functionality over the wide range of advanced electronic applications.open2

    Magnolin targeting of ERK1/2 inhibits cell proliferation and colony growth by induction of cellular senescence in ovarian cancer cells

    Get PDF
    Ras/Raf/MEKs/ERKs and PI3 K/Akt/mTOR signaling pathways have key roles in cancer development and growth processes, as well as in cancer malignance and chemoresistance. In this study, we screened the therapeutic potential of magnolin using 15 human cancer cell lines and combined magnolin sensitivity with the CCLE mutaome analysis for relevant mutation information. The results showed that magnolin efficacy on cell proliferation inhibition were lower in TOV‐112D ovarian cancer cells than that in SKOV3 cells by G1 and G2/M cell cycle phase accumulation. Notably, magnolin suppressed colony growth of TOV‐112D cells in soft agar, whereas colony growth of SKOV3 cells in soft agar was not affected by magnolin treatment. Interestingly, phospho‐protein profiles in the MAPK and PI3 K signaling pathways indicated that SKOV3 cells showed marked increase of Akt phosphorylation at Thr308 and Ser473 and very weak ERK1/2 phosphorylation levels by EGF stimulation. The phospho‐protein profiles in TOV‐112D cells were the opposite of those of SKOV3 cells. Importantly, magnolin treatment suppressed phosphorylation of RSKs in TOV‐112D, but not in SKOV3 cells. Moreover, magnolin increased SA‐β‐galactosidase‐positive cells in a dose‐dependent manner in TOV‐112D cells, but not in SKOV3 cells. Notably, oral administration of Shin‐Yi fraction 1, which contained magnolin approximately 53%, suppressed TOV‐112D cell growth in athymic nude mice by induction of p16Ink4a and p27Kip1. Taken together, targeting of ERK1 and ERK2 is suitable for the treatment of ovarian cancer cells that do not harbor the constitutive active P13 K mutation and the loss‐of‐function mutations of the p16 and/or p53 tumor suppressor proteins

    RSK2-Mediated ELK3 Activation Enhances Cell Transformation and Breast Cancer Cell Growth by Regulation of c-fos Promoter Activity

    Get PDF
    Ribosomal S6 kinase 2 (RSK2), regulated by Ras/Raf/MEKs/ERKs, transmits upstream activation signals to downstream substrates including kinases and transcription and epigenetic factors. We observed that ELK members, including ELK1, 3, and 4, highly interacted with RSK2. We further observed that the RSK2-ELK3 interaction was mediated by N-terminal kinase and linker domains of RSK2, and the D and C domains of ELK3, resulting in the phosphorylation of ELK3. Importantly, RSK2-mediated ELK3 enhanced c-fos promoter activity. Notably, chemical inhibition of RSK2 signaling using kaempferol (a RSK2 inhibitor) or U0126 (a selective MEK inhibitor) suppressed EGF-induced c-fos promoter activity. Moreover, functional deletion of RSK2 by knockdown or knockout showed that RSK2 deficiency suppressed EGF-induced c-fos promoter activity, resulting in inhibition of AP-1 transactivation activity and Ras-mediated foci formation in NIH3T3 cells. Immunocytofluorescence assay demonstrated that RSK2 deficiency reduced ELK3 localization in the nucleus. In MDA-MB-231 breast cancer cells, knockdown of RSK2 or ELK3 suppressed cell proliferation with accumulation at the G1 cell cycle phase, resulting in inhibition of foci formation and anchorage-independent cancer colony growth in soft agar. Taken together, these results indicate that a novel RSK2/ELK3 signaling axis, by enhancing c-Fos-mediated AP-1 transactivation activity, has an essential role in cancer cell proliferation and colony growth

    Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epilepsy is a common neurological disorder, which is attributed to uncontrollable abnormal hyper-excitability of neurons. We investigated the feasibility of using low-intensity, pulsed radiation of focused ultrasound (FUS) to non-invasively suppress epileptic activity in an animal model (rat), which was induced by the intraperitonial injection of pentylenetetrazol (PTZ).</p> <p>Results</p> <p>After the onset of induced seizures, FUS was transcranially administered to the brain twice for three minutes each while undergoing electroencephalographic (EEG) monitoring. An air-backed, spherical segment ultrasound transducer (diameter: 6 cm; radius-of-curvature: 7 cm) operating at a fundamental frequency of 690 KHz was used to deliver a train of 0.5 msec-long pulses of sonication at a repetitive rate of 100 Hz to the thalamic areas of the brain. The acoustic intensity (130 mW/cm<sup>2</sup>) used in the experiment was sufficiently within the range of safety guidelines for the clinical ultrasound imaging. The occurrence of epileptic EEG bursts from epilepsy-induced rats significantly decreased after sonication when it was compared to the pre-sonication epileptic state. The PTZ-induced control group that did not receive any sonication showed a sustained number of epileptic EEG signal bursts. The animals that underwent sonication also showed less severe epileptic behavior, as assessed by the Racine score. Histological analysis confirmed that the sonication did not cause any damage to the brain tissue.</p> <p>Conclusions</p> <p>These results revealed that low-intensity, pulsed FUS sonication suppressed the number of epileptic signal bursts using acute epilepsy model in animal. Due to its non-invasiveness and spatial selectivity, FUS may offer new perspectives for a possible non-invasive treatment of epilepsy.</p

    Evaluating a shared decision-making intervention regarding dialysis modality: development and validation of self-assessment items for patients with chronic kidney disease

    Get PDF
    Background Shared decision-making is a two-way symmetrical communication process in which clinicians and patients work together to achieve the best outcome. This study aimed to develop self-assessment items as a decision aid for choosing a dialysis modality in patients with chronic kidney disease (CKD) and to assess the construct validity of the newly developed items. Methods Five focus group interviews were performed to extract specific self-assessment items regarding patient values in choosing a dialysis modality. After survey items were refined, a survey of 330 patients, consisting of 152 hemodialysis (HD) and 178 peritoneal dialysis (PD) patients, was performed to validate the self-assessment items. Results The self-assessment for the decision aid was refined to 35 items. The structure of the final items appeared to have three dimensions of factors; health, lifestyle, and dialysis environment. The health factor consisted of 12 subscales (α = 0.724), the lifestyle factor contained 11 subscales (α = 0.624), and the dialysis environment factor was represented by 12 subscales (α = 0.694). A structural equation model analysis showed that the relationship between the decision aid factors (health, lifestyle, and dialysis environment), patients’ CKD perception, and cognition of shared decision-making differed between HD patients and PD patients. Conclusion We developed and validated self-assessment items as part of a decision aid to help patients with CKD. This attempt may assist CKD patients in making informed and shared decisions closely aligned with their values when considering dialysis modality

    Motor-Evoked Potential Confirmation of Functional Improvement by Transplanted Bone Marrow Mesenchymal Stem Cell in the Ischemic Rat Brain

    Get PDF
    This study investigated the effect of bone marrow mesenchymal stem cells (BMSCs) on the motor pathway in the transient ischemic rat brain that were transplanted through the carotid artery, measuring motor-evoked potential (MEP) in the four limbs muscle and the atlantooccipital membrane, which was elicited after monopolar and bipolar transcortical stimulation. After monopolar stimulation, the latency of MEP was significantly prolonged, and the amplitude was less reduced in the BMSC group in comparison with the control group (P < .05). MEPs induced by bipolar stimulation in the left forelimb could be measured in 40% of the BMSC group and the I wave that was not detected in the control group was also detected in 40% of the BMSC group. Our preliminary results imply that BMSCs transplanted to the ischemic rat brain mediate effects on the functional recovery of the cerebral motor cortex and the motor pathway

    TonEBP suppresses IL-10-mediated immunomodulation

    Get PDF
    TonEBP is a key transcriptional activator of M1 phenotype in macrophage, and its high expression is associated with many inflammatory diseases. During the progression of the inflammatory responses, the M1 to M2 phenotypic switch enables the dual role of macrophages in controlling the initiation and resolution of inflammation. Here we report that in human and mouse M1 macrophages TonEBP suppresses IL-10 expression and M2 phenotype. TonEBP knockdown promoted the transcription of the IL-10 gene by enhancing chromatin accessibility and Sp1 recruitment to its promoter. The enhanced expression of M2 genes by TonEBP knockdown was abrogated by antagonism of IL-10 by either neutralizing antibodies or siRNA-mediated silencing. In addition, pharmacological suppression of TonEBP leads to similar upregulation of IL-10 and M2 genes. Thus, TonEBP suppresses M2 phenotype via downregulation of the IL-10 in M1 macrophagesope
    corecore